
Model Figure N F |𝐮𝒕| 𝐠𝟎 E

dim

𝐮𝒕 E

dim

C

dim

G

𝑳𝟐

C

𝑳𝟐

KP BS

Monkey J Maze Main

2,3

100 40 0 100 - - 10 - 0.98 5

Participant T5

Center-out

Main 3 64 20 3 64 - - 250 - 0.95 5

Monkey P

Multi-session

Main 4 100 16 0 100 - - 500 - 0.98 10

Monkey P

Single-session

Main 4 100 16 0 100 - - 500 - 0.98 10

Monkey J

CursorJump

Main 5 128 50 4 150 100 128 25 25 0.98 10

Monkey J

Center-out

Main 6 128 50 4 150 100 128 25 25 0.98 2

Participant T7

Center-out

Main 6 64 20 3 64 64 128 250 250 0.95 5

Lorenz attractor Supp. 2 64 3 0 64 - - 250 - 0.95 a.u.

Chaotic RNN Supp. 3 200 20 0 200 - - 2000 - 0.95 a.u.

Input pulses Supp.

6,7

200 20 1 200 128 128 2000 0 0.95 a.u.

RNN Integrator Supp. 8 200 20 1 128 128 128 2000 0 0.95 a.u.

Supplementary Table 1. Important hyper-parameters of LFADS models. Listed here are the

most important LFADS parameters, relating primarily to model capacity. ’N’ - number of units

in the generator, ’F’ - number of factors, |𝐮𝐭| - number of inferred inputs, ’E’ - encoder, ’C’ -

controller, ’G’ - generator, ’KP’ - keep probability in dropout layers, ’BS’ - bin size (ms).

Model Figure Electrode type Signal post-processing

Monkey J Maze Main 1, 2, 3 Utah array threshold crossings, spike

sorted

Participant T5 Center-out Main 3 Utah array threshold crossing

Monkey P Single-session Main 4 v-probe threshold crossing

Monkey P Multi-session Main 4 v-probe threshold crossing

Monkey J CursorJump Main 5 Utah array threshold crossing

Monkey J Center-out Main 6 Utah array threshold crossing

Participant T7 Center-out Main 6 Utah array threshold crossing

Supplementary Table 2. Signal collection technology and spike detection methods.

Supplementary Note: Synthetic datasets

Summary of synthetic datasets

We chose a variety of synthetic examples in an effort to show LFADS’s ability to infer

informative representations for dynamical systems of varying complexity. We ordered the

synthetic examples roughly by complexity to build intuition. The examples are, in order,

1. The pendulum example (Supp. Fig. 1) - a cartoon (no actual data), simply intended to

impart intuition using a well-known and tangible physical system.

2. The Lorenz model (Supp. Fig. 2, Supp. Table 1) - this simple model is now becoming

standard in the field (e.g., 1,2), as it is a simple and well-known example of a nonlinear,

chaotic dynamical system, and easy to understand and visualize due to its 3D state space.

3. A synthetic RNN example with random connections and without input (Supp. Fig. 3) - this

creates a much more complex high-dimensional dynamical system, intended to differentiate

our method from common methods in the field that have difficulty modeling high-

dimensional, highly nonlinear dynamics. This RNN does not have the same architecture as

that used in LFADS.

4. A synthetic RNN example with simple pulse inputs (Supp. Figs. 7,8) - this provides a clear

demonstration of the ability of LFADS to decompose an observed time series into both

dynamics and inputs. This RNN does not have the same architecture as that used in LFADS.

5. A synthetic RNN trained to perform an integration-to-bound task, given a noisy 1-D input

(Supp. Fig. 9). Integration-to-bound is a common model of decision-making in systems

neuroscience. This example shows the utility of LFADS not only in modeling a network

that is trained to perform a task, but also shows that LFADS can infer inputs in networks

that are performing meaningful computations. This RNN does not have the same

architecture as that used in LFADS.

Lorenz system

The Lorenz system is a set of nonlinear equations for three dynamic variables. Its limited

dimensionality allows its entire state space to be visualized. The evolution of the system’s state is

governed as follows

𝑦̇1 = 𝜎(𝑦2 − 𝑦1) (1)
𝑦̇2 = 𝑦1(𝜌 − 𝑦3) − 𝑦2 (2)
𝑦̇3 = 𝑦1𝑦2 − 𝛽𝑦3. (3)

We used the standard parameter values known for inducing chaos, 𝜎 = 10, 𝜌 = 28, and 𝛽 =
8/3, and used Euler integration with 𝛥𝑡 = 0.006. As in 1, we simulated a population of neurons

with firing rates given by linear read-outs of the Lorenz variables using random weights,

followed by an exponential nonlinearity. Spikes from these firing rates were then generated by a

Poisson process.

Our synthetic dataset consisted of 65 conditions, with 20 trials per condition. Each condition was

obtained by starting the Lorenz system with a random initial state vector and running it for 1s.

Twenty different spike trains were then generated from the firing rates for each condition.

Models were trained using 80% of the data (16 trials/condition) and evaluated using 20% of the

data (4 trials/condition). While this simulation is structurally quite similar to the Lorenz system

used in 1, we purposefully chose parameters that made the dataset more challenging. Specifically,

relative to 1, we limited the number of observations to 30 simulated neurons instead of 50,

decreased the baseline firing rate from 15 spikes/sec to 5 spikes/sec, and sped up the dynamics

by a factor of 4.

Chaotic RNNs as data generators

We tested the performance of each method at inferring the dynamics of a more complex

nonlinear dynamical system, a fully recurrent nonlinear neural network with strong coupling

between the units. We generated a synthetic dataset from an 𝑁-dimensional continuous time

nonlinear, so-called, “vanilla" RNN,

𝜏 𝐲̇(𝑡) = −𝐲(𝑡) + 𝛾 𝐖𝑦tanh(𝐲(𝑡)) + 𝐁 𝐪(𝑡). (40)

This makes a compelling synthetic case study for our method because many recent studies of

neuroscientific data have used vanilla RNNs as their modeling tool (e.g. 3–7). It should be

stressed that the vanilla RNN used as the data RNN here does not have the same functional form

as the network generator used in the LFADS framework, which is a GRU (see section 1.7),

although both have continuous variables and are not spiking models. For experiments in Supp.

Fig. 3, we set 𝐁 = 𝐪 = 0, but we included an input for experiments in Supp. Fig. 6.

The elements of the matrix 𝐖𝑦 were drawn independently from a normal distribution with zero

mean and variance 1/𝑁 . We set 𝛾 to either 1.5 or 2.5, both of which produce chaotic dynamics

at a relatively slow timescale compared to 𝜏 (see 3 for more details). The smaller 𝛾 value

produces “gentler" chaotic activity in the data RNN than the larger value. Specifically, we set

𝑁 = 50, 𝜏 = 0.025 s and used Euler integration with 𝛥𝑡 = 0.01 s. Spikes were generated by a

Poisson process with firing rates obtained by scaling each element of tanh(𝐲(𝑡)) to take values

in [0,1], and then used as the rate in a Poisson process to give rates lying between 0 and 30

spikes/s.

Our dataset consisted of 400 conditions obtained by starting the data RNN at different initial

states with elements drawn from a normal distribution with zero mean and unit variance. Firing

rates were then generated by running the data RNN for 1 s, and 10 spiking trials were produced

for each condition, yielding a total of 4,000 spiking trials. Models were trained using 80% of the

data (8 trials/condition) and evaluated using 20% of the data (2 trials/condition).

Inferring pulse inputs to a chaotic RNN

We tested the ability of LFADS to infer the input to a chaotic RNN (Supp. Figs. 6,7). In general,

the problem of disambiguating dynamics from inputs is ill-posed, so we encouraged the

dynamics to be as simple as possible by including an 𝐿2 regularizer in the LFADS network

generator (see Supplementary Table 1). We note that weight regularization is a standard

technique that is nearly universally applied to neural network architectures.

Focusing on Supp. Fig 6, we studied the synthetic example of inferring the timing of a delta

pulse input to a randomly initialized RNN. To introduce an input into the data RNN, the

elements of 𝐁 were drawn independently from a normal distribution with zero mean and unit

variance. During each trial, we perturbed the network by delivering a delta pulse of magnitude

50, 𝑞(𝑡) = 50𝛿(𝑡 − 𝑡𝑝𝑢𝑙𝑠𝑒), at a random time 𝑡𝑝𝑢𝑙𝑠𝑒 between 0.25s and 0.75s (the full trial

length was 1s). This pulse affects the underlying rates produced by the data RNN, which

modulates the spike generation process. To test the ability of the LFADS model to infer the

timing of these input pulses, we included in the LFADS model an inferred input with

dimensionality of 1. We explored the same two values of 𝛾 as in the synthetic example to model

chaotic RNN dynamics, 1.5 and 2.5. Other than adding the input pulses, the data for input-pulse

perturbations were generated as in the first data RNN example described above.

After training, which successfully inferred the firing rates, we extracted inferred inputs from the

LFADS model (eqn. 15) by running the system 512 times for each trial, and averaging, defining

𝐮𝑡 = ⟨𝐮𝑡⟩𝐠0,𝐮1:𝑇
. To see how the timing of the inferred input was related to the timing of the

actual input pulse, we determined the time at which 𝐮𝑡 reached its maximum value.

Inferring white noise input in an RNN trained to integrate to bound

We tested the ability of LFADS to infer the input to a vanilla RNN trained to integrate a noisy

signal to a +1 or −1 bound. Weight matrices for this "data simulation RNN" were drawn

independently from a Gaussian distribution with zero mean and variance 0.64/𝑁, and 𝐿2

regularization was used during training. The noisy input signal was drawn from a Gaussian

distribution with zero mean and variance 0.0625. 800 conditions were generated with white

noise inputs, and 5 spiking trials were generated per condition. This resulted in 4,000 1s spiking

trials. 3,200 trials were used for training and 800 trials were used for validation.

After training LFADS on the integrate-to-bound data (simulated as above), inferred inputs (𝐮𝑡)

for a given trial were extracted by taking 1024 samples from the (𝐮𝑡) posterior distribution

produced by LFADS, and then averaging. These inferred inputs were then compared (using 𝑅2)

with the real inputs to the integrate-to-bound model, which were saved down previously during

training.

Supplementary Note: LFADS-related work in machine learning literature

Recurrent neural networks have been used extensively to model neuroscientific data (e.g. 3–7),

but the networks in these studies were all trained in a deterministic setting. An important recent

development in deep learning has been the advent of the variational auto-encoder 8,9, which

combines a probabilistic framework with the power and ease of optimization of deep learning

methods. VAEs have since been generalized to the recurrent setting, for example with variational

recurrent networks10, deep Kalman filters11, and the RNN DRAW network12.

There is also a line of research applying probabilistic sequential graphical models to neural data.

Recent examples include PLDS13, switching LDS14, GCLDS15, and PfLDS16. These models

employ a linear Gaussian dynamical system state model with a generalized linear model (GLM)

for the emissions distribution, typically using a Poisson process. In the case of the switching

LDS, the generator includes a discrete variable that allows the model to switch between linear

dynamics. GCLDS employs a generalized count distribution for the emissions distribution.

Finally, in the case of PfLDS, a nonlinear feed-forward function (neural network) is inserted

between the LDS and the GLM.

Gaussian process models have also been explored. GPFA17 uses Gaussian processes (GPs) to

infer a time constant with which to smooth neural data and has seen widespread use in

experimental laboratories. More recently, the authors of 1 have used a variational approach

(vLGP) to learn a GP that then passes through a nonlinear feed-forward function to extract the

single-trial dynamics underlying neural spiking data.

Additional work applying variational auto-encoding ideas to recurrent networks can be found in
18. The authors of 11 have defined a very general nonlinear variational sequential model, which

they call the Deep Kalman Filter (DKF). The authors of 19 applied recurrent variational

architectures to problems of control from raw images. Finally, 20 applied dynamical variational

ideas to sequences of images. Due to the generality of the equations in many of these references,

LFADS is likely one of many possible instantiations of a variational recurrent network applied to

neural data (in the same sense that a convolutional network architecture applied to images is also

a feed-forward network, for example).

The LFADS model decomposes the latent code into an initial condition and a set of innovation-

like inferred inputs that are then combined via an RNN to generate dynamics that explain the

observed data. Recasting our work in the language of Kalman filters, our nonlinear generator is

analogous to the linear state estimator in a Kalman filter, and we can loosely think of the inferred

inputs in LFADS as innovations in the Kalman filter language. However, an “LFADS

innovation” is not strictly defined as an error between the measurement and the read-out of the

state estimate. Rather, the LFADS innovation may depend on the observed data and the

generation process in extremely complex ways.

Supplementary References

1. Zhao, Y. & Park, I. M. Variational Latent Gaussian Process for Recovering Single-Trial

Dynamics from Population Spike Trains. Neural Comput. 29, 1293–1316 (2017).

2. Linderman, S. et al. Bayesian Learning and Inference in Recurrent Switching Linear

Dynamical Systems. Artificial Intelligence and Statistics 914–922 (2017). at

<http://proceedings.mlr.press/v54/linderman17a.html>

3. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural

networks. Neuron 63, 544–557 (2009).

4. Mante, V., Sussillo, D., Shenoy, K. V & Newsome, W. T. Context-dependent computation

by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

5. Carnevale, F., de Lafuente, V., Romo, R., Barak, O. & Parga, N. Dynamic Control of

Response Criterion in Premotor Cortex during Perceptual Detection under Temporal

Uncertainty. Neuron 86, 1067–1077 (2015).

6. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that

finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–

1033 (2015).

7. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent Network Models of Sequence

Generation and Memory. Neuron 90, 1–15 (2016).

8. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv [stat.ML] (2013).

at <http://arxiv.org/abs/1312.6114v10>

9. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate

inference in deep generative models. in International Conference on Machine Learning,

2014 (2014).

10. Chung, J. et al. A Recurrent Latent Variable Model for Sequential Data. in Advances in

Neural Information Processing Systems (NIPS) (2015).

11. Krishnan, R. G., Shalit, U. & Sontag, D. Deep Kalman Filters. arXiv Prepr.

arXiv1511.05121 (2015).

12. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D. DRAW: A Recurrent

Neural Network For Image Generation. arXiv [cs.CV] (2015). at

<http://arxiv.org/abs/1502.04623>

13. Macke, J. H. et al. Empirical models of spiking in neural populations. Advances in neural

information processing systems 1350–1358 (2011).

14. Petreska, B. et al. in Advances in Neural Information Processing Systems 24 (eds. Shawe-

Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. & Weinberger, K. Q.) 756–764 (Curran

Associates, Inc., 2011). at <http://papers.nips.cc/paper/4257-dynamical-segmentation-of-

single-trials-from-population-neural-data.pdf>

15. Gao, Y., Buesing, L., Shenoy, K. V. & Cunningham, J. P. High-dimensional neural spike

train analysis with generalized count linear dynamical systems. Adv. Neural Inf. Process.

Syst. 1–9 (2015). at

<https://bitbucket.org/mackelab/pop_spike_dyn/downloads/Gao_Buesing_2015_GCLDS.

pdf>

16. Gao, Y., Archer, E. W., Paninski, L. & Cunningham, J. P. in Advances in Neural

Information Processing Systems 29 (eds. Lee, D. D., Sugiyama, M., Luxburg, U. V,

Guyon, I. & Garnett, R.) 163–171 (Curran Associates, Inc., 2016). at

<http://papers.nips.cc/paper/6430-linear-dynamical-neural-population-models-through-

nonlinear-embeddings.pdf>

17. Yu, B. M. et al. Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial

Analysis of Neural Population Activity. J. Neurophysiol. 102, 614–635 (2009).

18. Bayer, J. & Osendorfer, C. Learning stochastic recurrent networks. arXiv Prepr.

arXiv1411.7610 (2014).

19. Watter, M., Springenberg, J., Boedecker, J. & Riedmiller, M. Embed to control: A locally

linear latent dynamics model for control from raw images. in Advances in Neural

Information Processing Systems 2746–2754 (2015).

20. Karl, M., Soelch, M., Bayer, J. & van der Smagt, P. Deep variational Bayes filters:

Unsupervised learning of state space models from raw data. arXiv Prepr.

arXiv1605.06432 (2016).

